Achieving Site-Specific Remedial Goals for PHCs, PAHs, and VOCs through a Collaborative Multidisciplinary Approach

SustainTech 2025 Danny Procter- Geo Tactical Remediation Ltd.


General Site Description

- Site is located on Kehewin Cree Nation No. 123
 - Former gas station, currently inactive and unoccupied
 - Site contaminated due to UST's requiring removal
 - Centrally located with several administrative facilities and schools located nearby.

Image of Area

#123

Project Objective

- Primary site objective for project was to advance the site in the Federal Contaminated Sites Action Plan:
 - Remediation of site to functional land use
 - Source removal and subsequent risk management

Geo Tactical Remediation Ltd.

Who we are

- Environmental service company
 - Speciality: In-situ injection remediation
- Based in Calgary, AB
- Service backed by science

What we do

- In Situ Injection Services
 - Permeation (Matrix) Injection
 - Fracture Injection
- 3D Tiltmeter Mapping
- Assist with developing in-situ remediation programs

Stakeholders

- Client and Project Oversight Kehewin Cree Nation No. 123
- Funding Indigenous Services Canada
- Overall Project Management Bosgoed Project Consultants
- Technical Project Management Associated Environmental Consultants
- Injection Services Geo Tactical Remediation Ltd.
- Thermal Services Nelson Environmental Remediation
- Site goals
 - CCME guidelines
 - Community engagement

Community Business Engagement

- Local contractors
 - Personnel to assist with injection
 - Snow clearing
 - Fuel
 - Site cleanup
 - Security
 - Aided in sourcing additional community-based services

Effective Collaboration

 Flexibility in site schedule and plan adjustments due to unexpected site conditions

- Close communication and transparency allowed for rapid site plan adjustments
 - E.g., adjustment in sampling event time to allow for clearer picture of amendment effectiveness.
- All stakeholders involved in significant site plan adjustments.
 - Allowed rapid implementation and reduced delays

Technology Disciplines Applied

- Onsite ex-situ thermal desorption by Nelson for areas with free phase and small volume near surface contamination.
- In-situ bioremediation injections selected at depths greater than 2 metres (GTR) outside and under of free phase footprint.

Why Bioremediation

- Bioremediation approach chosen for:
 - Contaminant type: BTEX, F1 and F2, naphthalene, MTBE...
 - Hydrogen peroxide highly reactive and limited longevity- geology concerns with clays
 - Alternate Oxidants: Residuals concern
- Bioamendments are safer to handle and provides longevity.
 - Safety aspect of site location and allowed for onsite local engagement (oxidant has significant training requirements)

Amendments Injected

- PTS Biostimulation package (nutrients)
- PTBac Microbial bioaugmentation blend of aerobic and anaerobic microbes
- iPAC Activated Carbon
 - Adsorption, enhanced biofilm production, increased residence time
- Sand proppant Provide permeable pathways for multiple injections without the need to re-mobilize drilling equipment.

Site Geology and Contaminants

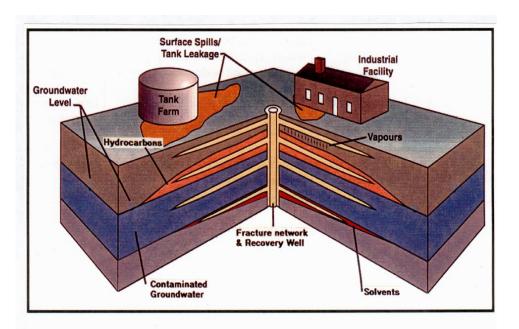
Geology

- GW between 1.5-2m bgs
 - No significant GW gradient
- Soils are primarily clay and silts with some layers of sand and gravel.
- Silty clay shale bedrock underlying contaminated site area

- Contaminants
 - GW- BTEX, PHC fractions F1 and F2, naphthalene
 - MTBE
 - Soil- BTEX, PHC fraction F1, and naphthalene

Challenges of Low Permeability Formations

- Low injection / extraction flow rates
- Low radius of distribution / radius of capture
- Limited connection with secondary porosity
 - Resulting in reduced contact with contaminants
- Limitations on injectable particle size
- Rebound


Injection: Modes of Emplacement

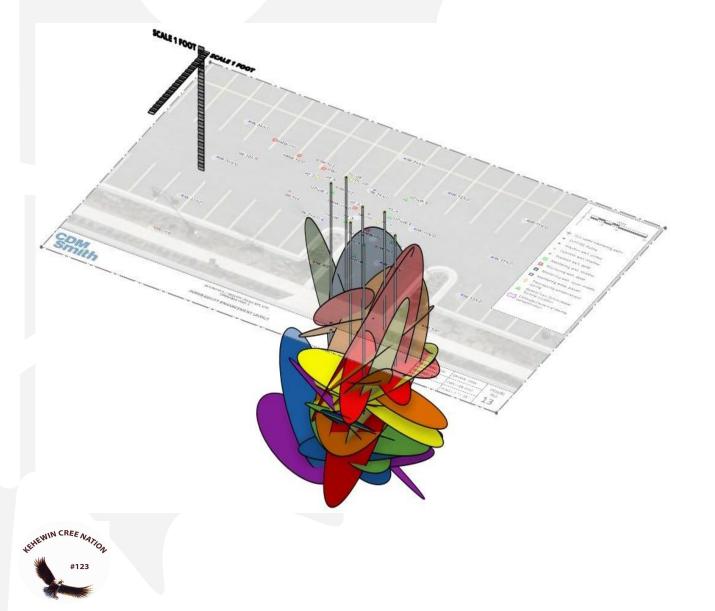
- Fracture Injection
 - Direct injection emplacement of remediation amendment
 PTS, PTBac and iPAC
 - Sand propped fractures (Area B) for multiple solution injections
 - iPAC included
- Permeation Injection
 - Into sand propped fractures through installed injection wells (Area B)
 - PTS and PTBac

Fracture Injection

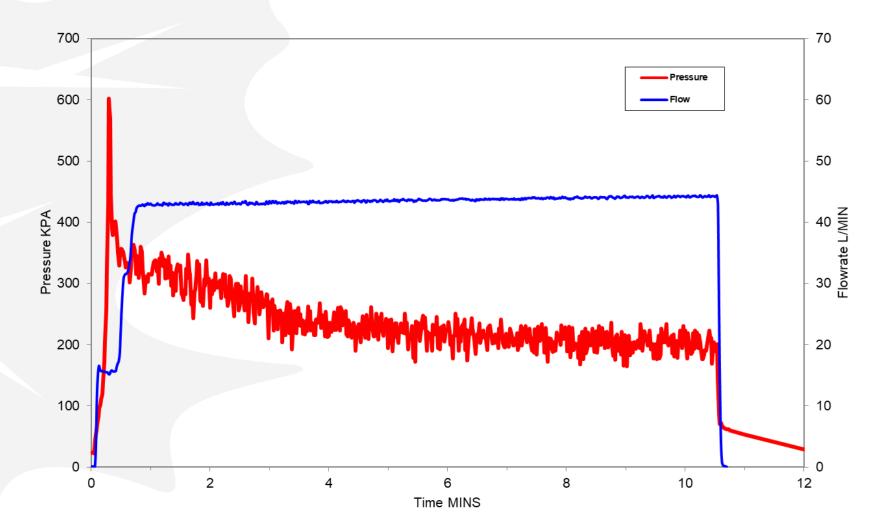
- Fracture Injection is a process in which a fluid is applied to a soil or rock mass until failure of the soil or rock occurs, which results in a tensile parting (i.e. fracture)
- Used for:
 - Increasing bulk permeability
 - Greater treatment area per well
 - Better contact with contaminants in matrices with secondary porosity
 - Solid phase amendments

* Direct Injection- NOT a mode of injection, a method of drilling

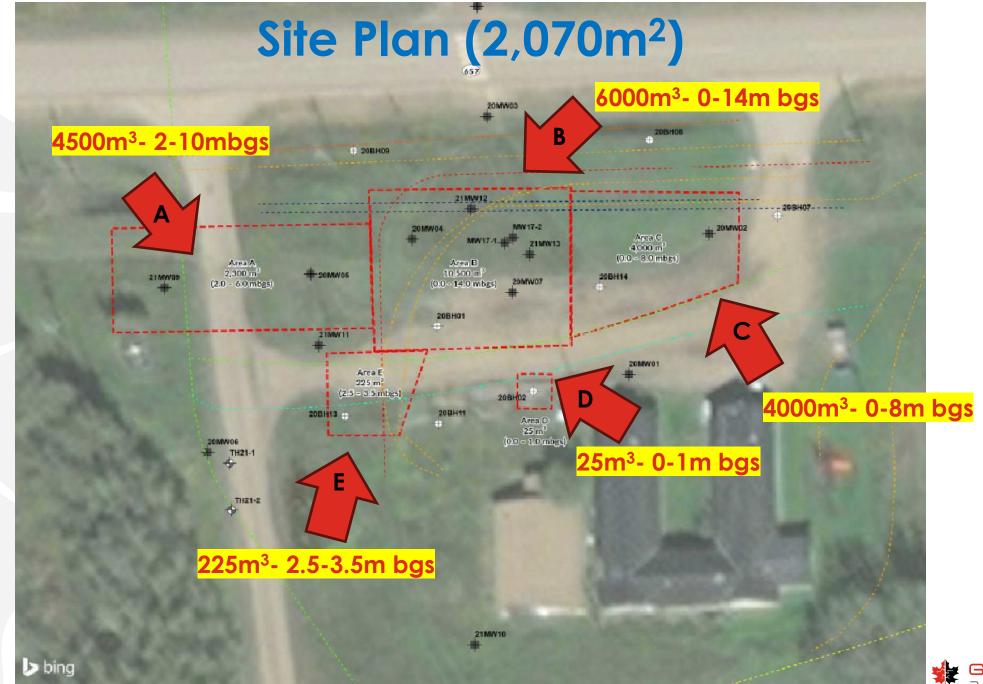
Contact Area


Contact Method	Unit contact
	Area per
	Injection Interval
	Length (m ² /m)
Direct Push Borehole from 6.4 cm OD rod	0.2
Injection Well installed in 15.2 cm OD borehole	0.5
5 m radius fractures at 0.6 m vertical spacing (80 m²/frac)	260

Fractures Exposed



Pressure-Flow Rate – Time Plot of Fracture Injection


C-FI-1-2-2 PRESSURE and FLOW RATE VS. PUMPING TIME

#123

EWIN CREE NATIO

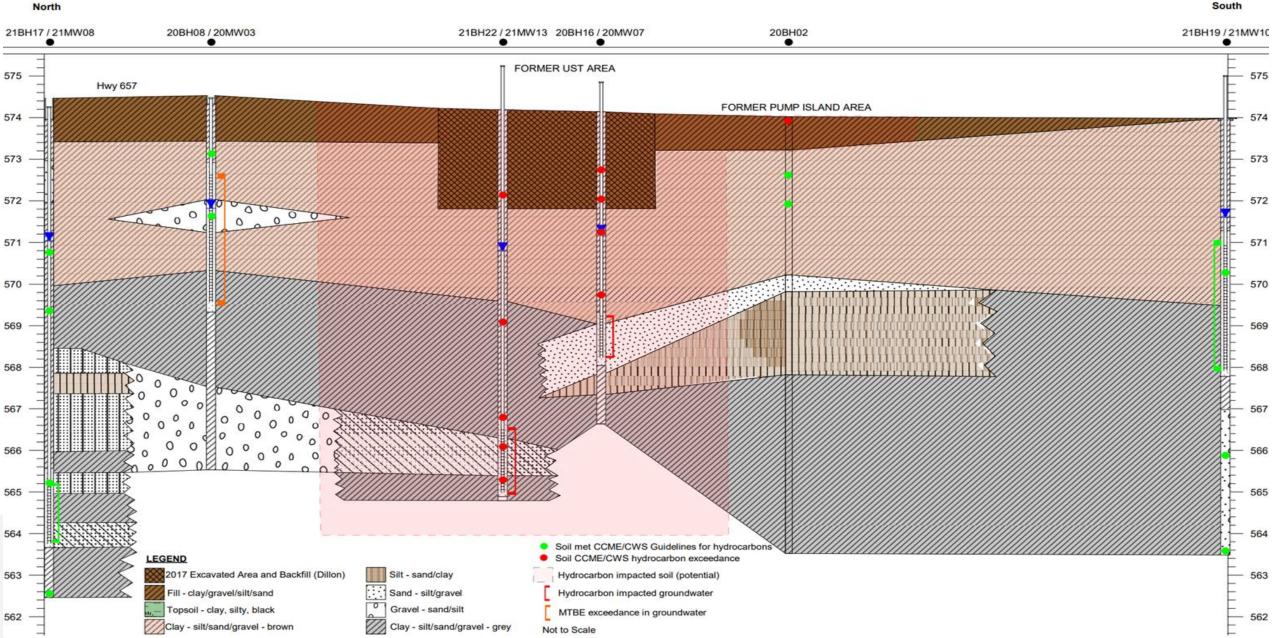
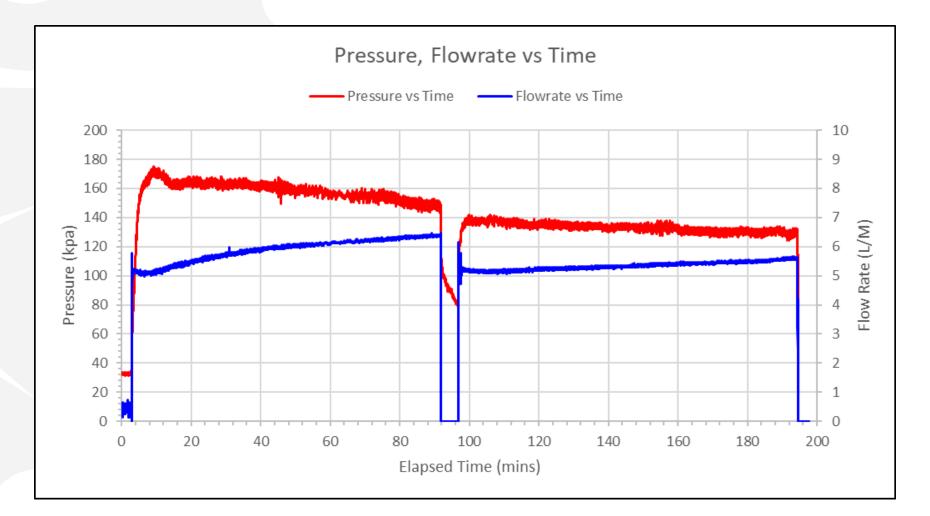


Figure B5



D'

D

Permeation Injection into Sand Propped Fractures

HEWIN CREE NATION #123

Injection Summary

Injection Event, Area, Completion Date	Number of Injection Locations	Number of Injection Intervals	Number of Wells Injected	Total Injection Volume (m ³)	Total PTS Injected (kg)	Total PTBac Injected (kg)	Total iPAC Injected (kg)	Total Sand Injected (kg)
1 (All Areas), March 2022	72	352	20	229	11,170	128	10,995	59,575
2 (B &C) October 2022	22	111	2	51	5,125	27	1,020	NA
3 (B&C) August 2023	43	264	NA	108	2,335	66	4,710	NA
Total All Injections	137	727	22	388	16,295	155	16,725	59,575

EHEWIN CREE NATION

#123

Results

Table 8-2 Maximum Concentrations in Groundwater							
		Maximum Concentration (mg/L)					
Area	Parameters	Pre- and During Remediation	Post-remediation (December 2023)				
A	Benzene	0.00620	<0.00050				
	Ethylbenzene	0.463	<0.00050				
	Naphthalene	0.0381	0.0000580				
	MTBE	0.0226	<0.00050				
В	Benzene	19.4	1.88				
	Toluene	3.87	0.0202				
	Ethylbenzene	2.57	0.07				
	Xylenes	5.63	0.15				
	PHC F1	29.0	2.24				
	Naphthalene	0.458	0.0218				
	Chloroform	0.0108	<0.0010 ¹				
	Methylene chloride	0.151	0.0262 ¹				
	MTBE	6.83	0.694				
	1,1,2,2-Tetrachloroethane	0.0224	<0.0010 ¹				
С	Benzene	6.5	<0.00050				
	Toluene	0.163	<0.00050				
	Ethylbenzene	0.910	<0.00050				
	Xylenes	0.790	<0.00050				
	PHC F1	<3.38	<0.100				
	Naphthalene	0.0587	<0.00030				
	MTBE	1.38	0.00343				

Red indicates a guideline exceedance. ¹ Well was decommissioned before December 2023.

LEHEWIN CREE NATION

#123

Anaerobic Biodegradation Parameters

Well			20MW05				MW17-1			20MW02			
	Date Sampled		08-Nov-20	26-May-22	26-Oct-22	18-May-23	13-Dec-23	09-Nov-20	27-May-22	27-Oct-22	08-Nov-20	26-May-22	27-Oct-22
Parameter Units			Area A				Area B			Area C			
и Ф	Alkalinity, Total (as CaCO3)	mg/L	1,010	814	868	558	760	1,477	1200	1150	752	803	713
stri∈	Nitrate and Nitrite (as N)	mg/L	0.24	<0.112	0.627	250	33.3	0	<0.224	<0.447	<0.11	0.671	<0.224
emistries	pH (field)	рН	7.12	7.34	7.19	8.72	7.37	4	7.37	7.34	6.7	7.03	7.08
еци	Sulfate (SO4)	mg/L	2270	4320	3750	2200	3040	326	5200	12400	2250	4120	6980
0 P	Iron-Dissolved	mg/L	2.94	<0.050	<0.050	0.016	<0.050	6	0.723	1.55	< 0.050	<0.050	<0.050
ovled	Manganese-Dissolved	mg/L	3.21	1.94	2.78	1.27	1.59	1	1.58	3.86	1.25	0.766	4.53
	Dissolved Oxygen (Field; In-Situ)	mg/L	-	-	0.75	-	-	-	-	0.52	-	-	-
Ō	Oxidation-Reduction Potential (ORP) (Field; In-Situ)	mV	-	-	53.7	-	-	-	-	-101.5	-	-	-
			Good for Anaerobic biodegradation										
			Terminal Electron Acceptors for Anaerobic reduction										

Challenges Encountered

	Challenge	Action
	Coinciding projects- Lift station build occurring at the same time	Clear communication between all contractors and stakeholders to move forward with minimal delays
	Surfacing in some parts of Area B and C.	Additional injection locations were used.
	Sand propped fracture network less effective for permeation injection than expected due some surfacing and a high degree of interconnection.	Amendment injected with fracture injection was increased, particularly for Injection 2.
Lettewin C	Unmarked, difficult to locate utilities resulted in stopping Injection 2 before the planned injections were completed.	Injection 3 adjusted to accommodate amendment mass not used in Injection 2 and remaining mass of PTS used to treat open excavation.

Conclusion

- Collaboration is "KEY" for projects with multiple stakeholders
 - Clear and consistent communication important when project adjustments need to be made
- Injection services benefited from local engagement

 Multi-discipline approach to reach remediation and risk management goals

Thank you to all partners!!

John Tucker

WIN CREE NATIO

BENEDIATION

Gary Bosgoed

Questions??

Contact information: Denise Hourd- Kehewin Cree Nation – <u>denise@kehewin.ca</u> Gord Guest- Geo Tactical Remediation – <u>gguest@geotactical.ca</u> Danny Procter- Geo Tactical Remediation- <u>dprocter@geoteactical.ca</u> Brent Schmidt- AE – <u>schmidtb@ae.ca</u>

